Lecture 3 : Limit of a Function

Click on this symbol 🕺 to view an interactive demonstration in Wolfram Alpha.

Limit of a Function

Consider the behavior of the values of $f(x) = x^2$ as x gets closer and closer ... and closer to 3. **Example** Let $f(x) = x^2$. The table below shows the behavior of the values of f(x) as x approaches 3 from the left and from the right.

x	$f(x) = x^2$	x	$f(x) = x^2$
2	4	4.0	16
2.5	6.25	3.5	12.25
2.9	8.41	3.1	9.61
2.95	8.70	3.05	9.3
2.99	8.94	3.01	9.06
2.995	8.97	3.005	9.03
2.999	8.99	3.001	9.006

We see that the values of $f(x) = x^2$ get closer to ______ as the sequence of values of x approaches 3. We also say that as x tends to 3, $f(x) = x^2$ tends to ______ or we abbreviate the statement with the notation:

$$f(x) \to _$$
 as $x \to 3$

We can also use the graph below to see the behavior of the values of f(x) as x approaches 3:

Definition

🎦 We write

$$\lim_{x \to a} f(x) = L$$

and say "The limit of f(x), as x approaches a, equals L", if we can make the value of f(x) as close as we like to L, by taking x sufficiently close to a(on either side) but not equal to a.

Note A Table of values like the one shown above for $f(x) = x^2$ is useful for predicting what the limit might be, but may give the wrong impression. (See the example where $f(x) = \sin(1/x)$ at the end of this set of notes). For now an accurate graph is the most reliable method we have to find limits. In

the next sections we will use a catalogue of well known limits together with some rules to calculate limits of more complicated functions. We give an outline of an algebraic proof that that $\lim_{x\to 3} x^2 = 9$ at the end of this set of lecture notes.

Example Use the graph of $y = x^2$ above to evaluate the following limits:

 $\lim_{x \to 3} x^2 = \lim_{x \to 2} x^2 =$

- Roughly speaking, the statement $\lim_{x\to a} f(x) = L$ means that as the values of x get close to (but not equal to) a, the values of f(x) get closer and closer to L.
- The value of the function f(x) at the point x = a, plays no role in determining the value of the <u>limit of the function at x = a</u> (if it exists), since we only take into account the behavior of a function near the point x = a to determine if it has a limit of not. (see the example below).

Example Let

$$g(x) = \begin{cases} x^2 & x \neq 3\\ 0 & x = 3 \end{cases}$$

(a) Draw the graph of this function and use the graph to find

 $\lim_{x \to 3} g(x)$

- Note that the value of $\lim_{x\to 3} g(x) \neq g(3)$ above.
- If the values of two functions, f(x) and g(x) are the same except at x = a, then they have the same limit as x approaches a if that limit exists, i.e. $\lim_{x\to a} f(x) = \lim_{x\to a} \frac{1}{g(x)}$ if it exists. (for example f(x) and g(x) above.)
- Sometimes the values of a function do not have a limit as x approaches a number a and, in this case, we say $\lim_{x\to a} f(x)$ does not exist. We will examine a number of ways in which this can happen below. (see the function k(x) shown below at x = 3, 7, 10.)
- The value of the function f(x) at the point x = a, plays no role in whether the limit exists or not, since we only take into account the behavior of a function near the point x = a to determine if it has a limit of not (Sometimes $\lim_{x\to a} f(x)$ exists for values of a which are not in the domain of f[e.g. $g_1(x) = \frac{(x-3)x^2}{(x-3)} = \begin{cases} x^2 & x \neq 3 \\ undefined & x = 3 \end{cases}$. Also check out $f(x) = x^2 \sin(1/x)$ next lecture.])

Example Consider the graph shown below of the function

The limit, $\lim_{x\to 0} k(x)$, when it exists will be the (unique) y-value that you approach as you travel along the graph of the function, from both sides.

(a) What is $\lim_{x\to 0} k(x)$?

(b) What happens at x = 3. Is there a unique number L so that we can make the value of f(x) as close as we like to L, by taking x sufficiently close to a = 3(on either side) but not equal to a = 3? In other words, does $\lim_{x\to 3} k(x)$ exist?

Left and Right Hand Limits

Definition We write $\lim_{x\to a^-} f(x) = L$ and say the left-hand limit of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x sufficiently close to a with x less than a. We say $\lim_{x\to a^+} f(x) = L$ and say the right-hand limit of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x sufficiently close to a with x greater than a.

11000 $1111_{x \to a}$ $1(w) = L$ 11 and $011y$ 11 $1111_{x \to a^-}$ $1(w) = L$ and $1111_{x \to a^+}$ $1(w) = L$	Note :	$\lim_{x \to a} f(x) =$	L if and only if	$\lim_{x \to a^{-}} f(x) = L$	and $\lim_{x\to a^+} f(x) =$	= L.
--	--------	-------------------------	------------------	-------------------------------	------------------------------	------

(c) Evaluate

.

 $\lim_{x \to 5} k(x)$

(d) What is $\lim_{x\to 7^-} k(x)$?

What is $\lim_{x\to 7^+} k(x)$?

Does $\lim_{x\to 7} k(x)$ exist?

(e) Does $\lim_{x\to 10} k(x)$ exist?

Infinite Limits

Definition: We write $\lim_{x\to a^-} f(x) = -\infty$ and say the left-hand limit of f(x) as x approaches a is equal to $-\infty$ if we can make the values of f(x) arbitrarily large and negative by taking x sufficiently close to a with x less than a. Similar definitions are used for the one sided infinite limits:

 $\lim_{x \to a^-} f(x) = \infty, \quad \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^+} f(x) = -\infty.$

Definition The line x = a is a vertical asymptote to the curve y = f(x) if at least one of the following is true:

 $\lim_{x \to a^-} f(x) = -\infty, \quad \lim_{x \to a^-} f(x) = \infty, \quad \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^+} f(x) = -\infty.$

Definition If $\lim_{x\to a^-} f(x) = \infty = \lim_{x\to a^+} f(x)$, then we say

$$\lim_{x \to a} f(x) = \infty$$

Sinilarly if $\lim_{x\to a^-} f(x) = -\infty = \lim_{x\to a^+} f(x)$, then we say

$$\lim_{x \to a} f(x) = -\infty$$

(f) Does the graph of k(x) above have a vertical asymptote? If so what is the equation of the vertical asymptote?

(g) Determine the infinite limits $\lim_{x\to 10^+} k(x)$ and $\lim_{x\to 10^-} k(x)$. (Say whether the limit is ∞ or $-\infty$.)

In the following example, we will see why a table of function values may be misleading when calculating limits.

Example The graph of $f(x) = \sin(1/x)$ is shown below. If we look at the behavior of the curve as x approaches 0, we see that the graph oscillates between -1 and +1 with increasing frequency. Since the y-values on the graph do not approach a unique y-value L as x approaches 0, we have that $\lim_{x\to 0} \sin(1/x)$ does not exist.

In this case, we can find two infinite sequences of x values both approaching 0, but giving different impressions of what happens the function values as x approaches 0.

Fill in the values of $\sin(1/x)$ for both sequences of x-values approaching 0 below.

x	$f(x) = \sin(1/x)$	x	$f(x) = \sin(1/x)$
$2/3\pi$		$2/\pi$	
$2/7\pi$		$2/5\pi$	
$2/11\pi$		$2/9\pi$	
$2/15\pi$		$2/13\pi$	
$2/(4n-1)\pi$		$2/(4n+1)\pi$	

Note For any function f(x), if $\lim_{x\to a} f(x)$ exists, then we cannot find two infinite sequences of x-values approaching 0 for which the corresponding function values approach different numbers

Appendix

How do we prove algebraically that we can make the values of x^2 as close as we like to 9, by taking x sufficiently close to 3(on either side) but not equal to 3.

The following statement guarantees it:

Given any number of decimal places, say n of them, I can always say that if x is equal to 3 up to n + 1 decimal places, then x^2 is equal to 9 up to n decimal places. For example if x = 3 + h, where h < .00001, then $x^2 = 9 + 2h + h^2$ and $2h + h^2 < .0001$, hence x^2 is certainly equal to 9 up to 3 decimal places.

So if I take a sequence of x values approaching 3, as the values of x get closer and closer to 3, the values of $f(x) = x^2$ are guaranteed to be equal to 9 up to 10 decimal places, 100 decimal places , 1000 decimal places, as the values of x get within 11, 101 and 102 decimal places of 3 respectively. Hence, for every sequence of values of x approaching 3, the values of $f(x) = x^2$ approach 9.